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Abstract-The mass transfer has been obtained for iaminar flow about rotating cones and disks in 
non-Newtonian power-law &ids. An exact result based on a two term representation of the velocity 
field is presented. A comparison with previous analyses based on a one term velocity profile defines 

the range of validity of the earlier results. 

NOMENCLATURE 

dimensionless parameters appearing in 
equations (4) and (5); 
concentration; 
molecular diffisivity; 
local wall mass flux; 
average wall mass flux; 
power law consistency index; 
cone slant length; 
power law index; 
velocity component parallel to cone surface; 
velocity component normal to cone surface; 
coordinate parallel to cone surface; 
coordinate normal to cone surface; 
cone half-angle; 

au 

0 -6; *=*; 
law -- L I az2 &; 

dimensionless transformation variable; 

dimensionless concentration 

density; 
rotational speed; 

A B, N, Ni, functions of n defined in paper; 

ReL, Reynolds number; 

Se, Schmidt number; 

=, average Nusselt number. 

Subscripts 

wall; 
free stream. 

INTRODUCTION 

THE HEAT or mass transfer in a non-Newtonian fluid 
of the power-law class to rotating disks and cones in 
laminar flow has been treated experimentally and 
analytically by several investigators. Hansford and Litt 
[l] reported on the mass transfer from a rotating disk 
made of the solute diffusing to non-Newtonian solu- 
tions. They measured the rates of dissolution of benzoic 
acid and napthol into an aqueous solution of carboxy- 
meth~lcellulose, and of benzoic acid into aqueous 
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polyethylene oxide. The value of the diffusivity was 
then determined by comparing their experimental 
results with an approximate theoretical expression for 
the mass flux to a rotating disk at high Schmidt 
numbers. Later, Greif, Cornet and Kappesser [2] 
applied this theoretical expression to the ex~rimental 
results on a rotating disk system to determine the 
molecular diffusivity of dissolved oxygen in an aqueous 
sodium chloride solution which was rendered non- 
Newtonian by adding various concentrations of Polyox 
WSR 301 (Union Carbide), a completely water soluble 
polymer of ethylene oxide. 

Greif and Paterson [3] then obtained a more accu- 
rate result for the mass flux at high Schmidt numbers. 
This was obtained from an exact solution to the 
boundary layer equation and was based on a linear 
velocity distribution as suggested by Lighthill [4]. The 
result was used in conjunction with the experimental 
results of [2] to obtain improved values for the oxygen 
diffusivity, A similar theoretical expression valid for 
the rotating cone geometry was then used by Paterson 
et al. [SJ with these diffusivity results. They compared 
the experimentally determined mass flux of dissolved 
oxygen to a 60” cone rotating in Polyox solution with 
the theoretical expression and obtained good agree- 
ment with the data. It is the purpose of the present 
analysis to extend the analysis of [3] and [5] to obtain 
a more accurate expression for the mass flux which 
should be applicable over a wider range of Schmidt 
numbers. This is accomplished by utilizing a two-term 
representation of the velocity field in the boundary 
layer as reported by Chao [6] to determine the heat 
or mass transfer in laminar forced convection for flow 
past a two-dimensional stationary body. The analysis 
of [6} has also been extended by Chao and Greif [7] 
for flow over a rotating body of revolution in a 
Newtonian fluid. 

ANALYSIS 

The geometry and coordinate system, including 
velocity components, for the flow near a rotating cone 
are shown in Fig. 1. In this coordinate system the mass 
transport, in the boundary layer is governed by 

~~+w~=D~ 
ax az 822 (1) 
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Table 1 

n a h 

FIG. 1. Coordinate system. 

subject to the following conditions: @x,0) = 1, 
B(x, co) = 0 and e(O, co) = 0. The two term represen- 
tation for the u component of the velocity field may 
be written as 
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and the w component may be obtained from the con- 
tinuity equation. 

To solve for the mass transport the u and w velocity 
component are substituted into equation (1) in con- 
junction with a transformation of coordinates from 
x, z to x(x), q= zg(x) (Chao [6]). A series solution to 
the resulting equation and boundary conditions has 
been obtained in terms of universal functions [6] and 
will not be repeated here. Of interest to us is the local 
mass Aux at the wall, j,,., where 

(3) 
I,= 0 

with (a~/&r),,=, prescribed in [6]. 

For the cone rotating in a non-Newtoni~ power-law 
fluid we obtain the following relations for the functions 
PI(x) and ,!&(x) from the work of Mitschka and 
Ulbrecht [8,9] : 

where a and b are tabulated in Table 1. The parameter b 
has been obtained from the basic equations in con- 
junction with the values of a tabulated in [8,9]_ 

The average mass flux over the conical surface 
extending from x = 0 to x = L is given by 

s 

L 

211 j,xsinccdx 

.r,= * 
nL2sina ’ (6) 

0.2 0.52821 
O-4 050371 
O-5 050052 
0.6 0.50021 
0.8 0.50378 
1.0 051021 
1.1 0.51383 
1.3 052148 
15 0.52917 

_ 2.05924 
- 1.37894 
- 1.24146 
- I.15316 
- 1.05149 
- 1Xtoooo 
- 0.98428 
- 096483 
- 095483 

Tabulation of parameters. 

Substituting the relation for the local wall flux into 
equation (6) and carrying out the integration yields 

0~18868BSc-“3Re~~‘2 007271B2Sc-2’3Re~~ 

3Nr+4 - 5N1 +4 

0~05079B’S~““Re~~~~~ B(NI/N)Sc-‘/3Ref1’2 

- 7Nrf4 3N,+4 

x ~~OS7Sl-O~~861~N~/N)+~i13S8(N~/N)z 

-0.12004(N,/N)3+...] 

B2(NI/N)Sc-2!3Re~1 

5N,+4 

x [~0360o-o*os16i(~,/~+O.i0676(N,/N)~ 

-0.10SS7(N~/N~3 + . ..] -. _. . 
1 

(7) 

With the one term velocity profile, only the first term 
remains in the brackets and the result is then identical 
to that given in [3,5]. The parameters in equation (7) 
are defined as follows: 

SC = 
K(osina)“-’ 

PD ’ 

Re 
L 

= pL2(~sina)2-” 

K 

N= 7+5n 
2(l+n)' 

N = W-4 
’ 3(l+n) 

UN u3 
A= 9 

i > 
(8) 

RESULTS AND DISCUSSION 

Equation (7) is rather long and although it appears 
to be tedious to evaluate, the repetitive nature of the 
terms greatly simplifies the calculations. Furthermore, 
for all the cases studied, only the first four terms within 
the brackets make a significant contribution to the sum. 
Recall that the expression with only the first term in 
the brackets is identical to the result obtained using 
the one term velocity profile [3,5]. 

We are particularly interested in comparing equation 
(7) with the one term relation and some typical curves 
are presented in Figs. 2-4. The one term result corre- 
sponds to the horizontal line denoted by SC = co. As 
anticipated, the one term result is of limited utility 
for moderate and moderately large values of the 
Schmidt number and for these conditions the more 
accurate result, namely equation (7), is recommended. 
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FIG. 2. Typical mass-transfer results. 
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FIG. 3. Typical mass-transfer results. 
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FIG. 4. Typical mass-transfer results. 

The appropriate dimensionless parameters required 
to describe the mass transfer are n, SC and ReL, and 
are defined for a non-Newtonian power-law fluid in 
the previous section. For a Newtonian fluid, n equals 
unity and the Schmidt number is then a property of 
the fluid alone. However, when n is not equal to unity, 

the Schmidt number is a dynamic property of the 
system and results corresponding to a constant value 
of SC do not correspond to a single fluid (with a given 
value of n). Indeed, each non-Newtonian fluid will have 
a range of Schmidt numbers associated with the range 
of rotational speeds for which measurements are made. 
This result makes the interpretation of data according 
to Figs. 2-4 rather complex. 

We now consider the data of Greif et al. [2] for 
the rotating disk (tl = 90”) that was used to determine 
the diffusivity of oxygen in a non-Newtonian saline 
solution. For the fluids treated there, the Schmidt 
numbers were greater than 800 and the Reynolds num- 
bers were less than 104. For this special range of 
parameters, the maximum error resulting from the one 
term Lighthill approximation [3] is found to be less 
than 5 per cent.* Hence, new values of the diffusivity 
based on the data of [2] and equation (7) will not be 
presented. It should be emphasized, however, that much 
larger errors can result for different experimental con- 
ditions (cf. Figs. 2-4) and then the more accurate 
relation for the mass flux, equation (7), should be used 
in determining the mass transport. 

CONCLUSIONS 

The laminar heat or mass transport to rotating cones 
or disks has been obtained for non-Newtonian power- 
law fluids. Anexact expression has been obtained which 
is based on a two term representation of the velocity 
field. This result is an improvement to the one term 
Lighthill expression and provides quantitative limits 
for the range of validity of the one term analysis. 
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CONVECTION LAMINAIRE SUR DES CONES ET DES DISQUES ROTATIFS 
DANS DES FLUIDES NON-NEWTONIENS SUIVANT UNE LO1 PUISSANCE 

Resume-On a tvalue le transfert de masse en tcoulement laminaire sur des cones et des disques rota& 
dans des fluides non-newtoniens suivant une loi puissance. Un r&hat exact est presente base sur une 
decomposition en deux termes du champ des vitesses. Une comparaison avec les analyses prbcedentes 
basees sur un profil de vitesse a un seul terme d&finit les domaines de validitt des rtsultats antQieurs. 

LAMINARE KONVEKTION AN ROTIERENDEN KEGELN UND SCHEIBEN IN FLUIDEN, 
DIE NICHT DEM NEWTONSCHEN POTENZGESETZ FOLGEN 

Zusammenfassung-Fur laminare Stromung wurde die Stoffiibertragung iiber rotierenden Kegeln und 
Scheiben in Fluiden, die nicht dem Newtonschen Potenzgesetz folgen, bestimmt. Ein genaues Ergebnis, 
das auf einer zweigliedrigen Darstellung des Geschwindigkeitsfeldes beruht, ist angegeben. Ein Vergleich 
mit friiheren Analysen, die auf einem eingliedrigen Geschwindigkeitsprofil beruhten, definiert den 

Giiltigkeitsbereich von friiheren Ergebnissen. 

JIAMHHAPHAII KOHBEKHHR HA KOHYCAX I4 j&HCKAX, BPAIBAIOIIIHXCd 
B HEHbIGTOHOBCKAX mHAKOCT5IX CO CTEI-IEHHbIM 3AKOHOM 

Auuorauue - Mccnenyercr MaCCOO6MeH npa naMuriaprioh4 reuemiu o~ono K~HYCOB pi AHCKOB, 

Bpa~ZlEOIAHXCK B HeHbIOTOHOBCKOti XCKHAKOCTH CO CTClIeHHblM 3aKOHOM. 

npeACTaBJIeH TOYHbIti BblBOA Ha OCHOBC AByXWIeHHOrO II&EACTaBJIeHHJl IIOJIlI CKOPOCTH. CpaBkfe- 

HHC C donee PaHHHMH WCCAeAOBBHHIIMH, OCHOBaHHblMW Ha OAHO’iJIeHHOM npeAcTaBJleHHH I&JO@iJISl 

CKOPOCTU, YCTaHaBJlHWT AkiBUa30H CU~BS?AAHBOCTH 3THX HCCJleAOBaHHi% 


